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The book is not meant to be a state-of-the-art monograph and has been designed 
to be read by both undergraduates and graduates. There are some theorems and 
proofs, many examples, and an extensive set of problems. A novel feature of the 
book is the inclusion of full solutions of all problems which should make the book 
particularly useful for self study. 

JOSEPH D. WARD 

14[65D17] The mathematics of surfaces, IV, Glen Mullineux (Editor), Oxford 
University Press, New York, NY, 1996, xiv+569 pp., 24cm, cloth, $145.00 

These are the proceedings from a conference at Brunel University in 1994. While 
otherwise a typical "Proceedings", it is distinguished by the two articles of R. E. 
Barnhill and N. Dyn on the work of the late John Gregory ("From computable error 
bounds through Gregory's square to convex combinations", and "Rational spline 
interpolation, subdivision algorithms and C2 polygonal patches", respectively). 

LARS B. WAHLBIN 

15[11A05, 11A51, 11A55, 11T06, llYll, 11Y16, 68Q25] Algorithmic 
number theory, Volume I: Efficient algorithms, by Eric Bach and Jeffrey Shal- 
lit, The MIT Press, Cambridge, MA, 1996, xvii+512 pp., 231 cm, hardcover, 
$55.00 

This book treats the design and analysis of algorithms for solving problems in 
elementary number theory for which more or less efficient algorithms are known. 
For example, good algorithms are known for testing large integers for primality, but 
none are known for factoring large composite integers. Primality testing appears in 
Chapter 9 of this book, while factoring is reserved for a projected second volume. 

Algorithmic number theory is one of the principal sources of examples of prob- 
lems in complexity classes studied in theoretical computer science. This is especially 
true for the randomized or probabilistic complexity classes. For example, let R-P 
denote the class of languages (sets) L for which there is a randomized algorithm 
(one which can choose random numbers) whose running time is bounded by a poly- 
nomial in the size of the input, which accepts inputs in L (says that the input is 
an element of L if it really is in L) with probability > 0.5, and which rejects every 
input not in L (says that the input is not in L whenever it really is not in L). 
The algorithm is allowed to assert that an input is not in L when it really is in L, 
provided that this happens for no more than half of the choices of random numbers. 
An algorithm in class RiP is called a Monte Carlo algorithm. 

Let COMPOSITE be the language of composite numbers, that is, the set of binary 
representations of all composite positive integers {4, 6, 8, 9,10, ... }. Here is a Monte 
Carlo algorithm which shows that COMPOSITE is in the complexity class RP. Let 
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(b/n) denote the Jacobi symbol. 

Input a binary number n. 

If n < 4, print n 0 COMPOSITE and stop. 

Choose a random integer b in 1 < b < n with uniform distribution. 

If gcd(2b, n) 7& 1, print n G COMPOSITE and stop. 

If b( -2 (b/n) (mod n), print n , COMPOSITE and stop. 

Print n C COMPOSITE and stop. 

If the input number n is a prime > 4, then the algorithm will say that n is 
not composite because b(n-l)/2 (b/n) (mod n) by Euler's Criterion. Solovay and 
Strassen proved that if n is odd and composite, then b(n-l)/2 E (b/n) (mod n) for 
at least one-half of all b in 1 < b < n which are relatively prime to n. Since one 
can compute gcd(b, n), b(n-l)/2 mod n, and (b/n) in O(log3 n) bit operations when 
1 < b < n, COMPOSITE is in complexity class RiP. 

Chapter 1 is a general introduction which precisely delineates the material cov- 
ered and distinguishes it from computational number theory. To the authors, com- 
putational number theory consists of constructing tables, gathering evidence for 
conjectures, searching for counterexamples, and proofs by enumeration of cases, all 
in number theory. This contrasts with algorithmic number theory, which studies 
number-theoretic algorithms and may be defined as finding solutions to equations, 
or proving their nonexistence, while making efficient use of time and space. For ex- 
ample, from this viewpoint, proving that n is prime means efficiently showing that 
the equation n = xy has no solution in integers x, y > 1. This chapter also outlines 
the basic facts and history of number theory and computational complexity. 

Chapter 2 presents the basic results of elementary and analytic number theory 
which are needed later. These include Euler's Theorem, the Mobius inversion for- 
mula, Euler's summation formula, and formulas for estimating sums taken over the 
primes. 

Chapter 3 is a survey of computational complexity theory, including language 
classes, reductions, APP-completeness, and computational models. 

After these preliminaries, Chapter 4 begins the real subject matter of the book 
by analyzing the Euclidean and binary algorithms for the greatest common divisor. 
The Euclidean algorithm computes a GCD by repeatedly dividing the larger number 
by the smaller one and replacing the larger number by the remainder in this division. 
When the smaller number is 0, the large one is the answer. The binary GCD 
algorithm removes all factors of 2 from the input numbers and then repeatedly 
subtracts the smaller number from the larger one. The larger number is replaced 
by the difference after all factors of 2 have been removed. The power of 2 in the 
GCD is computed separately. The Euclidean algorithm was the first nontrivial 
algorithm whose worst-case running time was analyzed. This was done more than 
150 years ago by Lame. 

Chapter 5 continues with basic algorithms for computing in the ring of integers 
modulo n: the power algorithm for ae mod n, the Chinese Remainder Theorem, 
and algorithms for Legendre and Jacobi symbols. 

There are many analogies between the ring Z of integers and the polynomial ring 
k[X], where k is a finite field. Chapter 6 discusses finite fields and some of these 
analogies. It describes the structure of the field k[X]/(f), where f is an irreducible 
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polynomial in k[X]. Also discussed are the Euclidean algorithm in k[X], continued 
fractions in the field k((+)) of expressions f Ei,<d ciXi with ci C k, and the 
generalized Jacobi symbol (g/f) for f, g c k [X]. 

Chapter 7 studies algorithms for solving certain equations over finite fields. 
It begins with the algorithms of Tonelli and Cipolla for finding square roots in 
Fq and continues with efficient algorithms for computing dth roots in Fq. It de- 
scribes Hensel's lemma, randomized algorithms for factoring polynomials, and what 
is known about deterministic algorithms for factoring polynomials. 

Chapter 8 reviews important results from analytic number theory needed to 
analyze algorithms for prime numbers. It discusses the prime number theorem, the 
Riemann Hypothesis, the Extended Riemann Hypothesis, primitive roots, Linnik's 
theorem on primes in arithmetic progression, the difference between consecutive 
primes, and extensions of this theory to prime ideals in algebraic number fields. The 
final section lists many explicit estimates for functions related to prime numbers. 

Chapter 9 discusses algorithms for testing primality, for generating "'random" 
prime numbers, for finding the nth prime number, for computing the number 7r(x) 
of primes < x, and for creating a table of primes between 1 and n. Primality 
tests described here include converses to Fermat's theorem, special tests for Fermat 
and Mersenne numbers, probabilistic prime tests, fast tests which are valid if the 
Extended Riemann Hypothesis is true, and correct tests whose running time is 
small provided the Generalized Riemann Hypothesis holds. The authors mention 
Carmichael numbers, Euler pseudoprimes and strong pseudoprimes. These are the 
numbers that cause certain proba'bilistic prime tests to produce incorrect results. 
Euler pseudoprimes are the composite numbers which the Monte Carlo algorithm 
above says are prime. Prime tests using elliptic curves are saved for the second 
volume, as is the result of Aldeman and Huang that the set of primes is in complexity 
class ZPP. Sieves are recommended for constructing tables of primes and also 
for tabulating the number of prime divisors function, d(n). The authors give a 
simplified version of the algorithm of Lagarias, Miller and Odlyzko for computing 
7r(x) in 0(x2/3+?) time and O(X2/3+E) space. 

There are dozens of interesting exercises at the end of each chapter, as well as 
extensive notes which embellish the text, tell the history of the subject matter, and 
give references to the literature. 

Appendix A gives solutions, or at least hints of or references to solutions for every 
exercise except the few that are open problems. The bibliography lists more than 
1750 references. There is a two page index to notation and 24 pages of ordinary 
index. 

The only typo known to me is one reported to me by an author: The bound on 
q in Theorem 8.7.13 on page 232 should be O(p2e(logn + elogp)2). 

This beautifully written volume is an excellent survey of the subject. I look 
forward to seeing the second volume. 
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